14 research outputs found

    Numerical Analysis of Thermal Conductivity of Non-Charring Material Ablation Carbon-Carbon and Graphite with Considering Chemical Reaction Effects, Mass Transfer and Surface Heat Transfer

    No full text
    Nowadays, there is little information, concerning the heat shield systems, and this information is not completely reliable to use in so many cases. for example, the precise calculation cannot be done for various materials. In addition, the real scale test has two disadvantages: high cost and low flexibility, and for each case we must perform a new test. Hence, using numerical modeling program that calculates the surface recession rate and interior temperature distribution is necessary. Also, numerical solution of governing equation for non-charring material ablation is presented in order to anticipate the recession rate and the heat response of non-charring heat shields. the governing equation is nonlinear and the Newton- Rafson method along with TDMA algorithm is used to solve this nonlinear equation system. Using Newton- Rafson method for solving the governing equation is one of the advantages of the solving method because this method is simple and it can be easily generalized to more difficult problems. The obtained results compared with reliable sources in order to examine the accuracy of compiling code

    Axisymmetric stagnation-point flow and heat transfer of a viscous, compressible fluid on a cylinder with constant heat flux

    Get PDF
    AbstractExisting solutions of the problem of axisymmetric stagnation-point flow and heat transfer on either a cylinder or flat plate are for incompressible fluid. Here, fluid with temperature dependent density is considered in the problem of axisymmetric stagnation-point flow and heat transfer on a cylinder with constant heat flux. The impinging free stream is steady and with a constant strain rate, k̄. An exact solution of the Navier–Stokes equations and energy equation is derived in this problem. A reduction of these equations is obtained by use of appropriate transformations introduced for the first time. The general self-similar solution is obtained when the wall heat flux of the cylinder is constant. All the solutions above are presented for Reynolds numbers, Re=k̄a2/2υ, ranging from 0.01 to 1000, selected values of compressibility factors, and different values of Prandtl number, where a is cylinder radius and ν is the kinematic viscosity of the fluid. For all Reynolds numbers and surface heat flux, as the compressibility factor increases, both components of the velocity field, the heat transfer coefficient and the shear-stresses increase, and the pressure function decreases

    Numerical Analysis of Thermal Conductivity of Non-Charring Material Ablation Carbon-Carbon and Graphite with Considering Chemical Reaction Effects, Mass Transfer and Surface Heat Transfer

    No full text
    Nowadays, there is little information, concerning the heat shield systems, and this information is not completely reliable to use in so many cases. for example, the precise calculation cannot be done for various materials. In addition, the real scale test has two disadvantages: high cost and low flexibility, and for each case we must perform a new test. Hence, using numerical modeling program that calculates the surface recession rate and interior temperature distribution is necessary. Also, numerical solution of governing equation for non-charring material ablation is presented in order to anticipate the recession rate and the heat response of non-charring heat shields. the governing equation is nonlinear and the Newton- Rafson method along with TDMA algorithm is used to solve this nonlinear equation system. Using Newton- Rafson method for solving the governing equation is one of the advantages of the solving method because this method is simple and it can be easily generalized to more difficult problems. The obtained results compared with reliable sources in order to examine the accuracy of compiling code

    Time-Dependent Heat Flux Estimation in Multi-Layer Systems by Inverse Method

    No full text
    corecore